Standards covered in the first unit

Membra	1.	Understandings:
ne structur e	3	 Phospholipids form bilayers in water due to the amphipathic properties of phospholipid molecules Membrane proteins are diverse in terms of structure, position in the membrane and function Cholesterol is a component of animal cell membranes
		Applications:
		 Cholesterol in mammalian membranes reduces membrane fluidity and permeability to some solutes
		Skills:
		 Drawing of the fluid mosaic model Analysis of evidence from electron microscopy that lead to the proposal of the Davson-Danielli model Analysis of the falsification of the Davson-Danielli model that lead to the Singer-Nicolson model
Membra ne transpor t	1.	Understandings:
		 Particles move across membranes by simple diffusion, facilitated diffusion, osmosis and active transport The fluidity of membranes allows materials to be taken into cells by endocytosis or released by exocytosis Vesicles move materials within cells
		Applications:
		 Structure and function of sodium-potassium pumps for active transport and potassium channels for facilitated diffusion in axons

 Tissues or organs to be used in medical procedures must be bathed in a solution with the same osmolarity as the cytoplasm to prevent osmosis Skills:
 Estimation of osmolarity in tissues by bathing samples in hypotonic and hypertonic solutions

Molecules	2.	Understandings:
to metabolism	1	 Molecular biology explains living processes in terms of the chemical substances involved Carbon atoms can form four covalent bonds allowing a diversity of stable compounds to exist Life is based on carbon compounds including carbohydrates, lipids, proteins and nucleic acids Metabolism is the web of all the enzyme-catalysed reactions in a cell or organism Anabolism is the synthesis of complex molecules from simpler molecules including the formation of macromolecules from monomers by condensation reactions Catabolism is the breakdown of complex molecules into simpler molecules including the hydrolysis of macromolecules into monomers
		Applications:
		 Urea as an example of a compound that is produced by living organisms but can also be artificially synthesized
		Skills:
		 Drawing molecular diagrams of glucose, ribose, a saturated fatty acid and a generalised amino acid Identification of biochemicals such as sugars, lipids or amino acids from molecular diagrams.

Water	2.	Understandings:
	2	 Water molecules are polar and hydrogen bonds form between them Hydrogen bonds and bipolarity explain the cohesive, adhesive, thermal and solvent properties of water Substances can be hydrophilic or hydrophobic
		Applications:
		 Comparison of the thermal properties of water with those of methane Use of water as a coolant in sweat Modes of transport of glucose, amino acids, cholesterol, fats, oxygen and sodium chloride in blood in relation to their solubility in water
Carbohydra tes and lipids	2. 3	 Understandings: Monosaccharide monomers are linked together by condensation reactions to form disaccharides and polysaccharide polymers Fatty acids can be saturated, monounsaturated or polyunsaturated Unsaturated fatty acids can be <i>cis</i> or <i>trans</i> isomers Triglycerides are formed by condensation from three fatty acids and one glycerol
		Applications:
		 Structure and function of cellulose and starch in plants and glycogen in humans Scientific evidence for health risks of <i>trans</i> fats and saturated fatty acids Lipids are more suitable for long-term energy storage in humans than carbohydrates Evaluation of evidence and the methods used to obtain the evidence for health claims made about lipids

		 Skills: Use of molecular visualisation software to compare cellulose, starch and glycogen Determination of body mass index by calculation or use of a nomogram
Proteins	2. 4	 Understandings: Amino acids are linked together by condensation to form polypeptides There are 20 different amino acids in polypeptides synthesised on ribosomes Amino acids can be linked together in any sequence giving a huge range of possible polypeptides The amino acid sequence of polypeptides is coded for by genes A protein may consist of a single polypeptide or more than one polypeptide linked together The amino acid sequence determines the three-dimensional conformation of a protein Living organisms synthesise many different proteins with a wide range of functions Every individual has a unique proteome
		 Applications: Rubisco, insulin, immunoglobulins, rhodopsin, collagen and spider silk as examples of the range of protein functions Denaturation of proteins by heat or by deviation of pH from the optimum Skills: Drawing molecular diagrams to show the formation of a peptide bond

Enzymes	2.	Understandings:
	5	 Enzymes have an active site to which specific substrates bind Enzyme catalysis involves molecular motion and the collision of substrates with the active site Temperature, pH and substrate concentration affect the rate of activity of enzymes Enzymes can be denatured Immobilized enzymes are widely used in industry
		Applications:
		 Methods of production of lactose-free milk and its advantages
		Skills:
		 Design of experiments to test the effect of temperature, pH and substrate concentration on the activity of enzymes Experimental investigation of a factor affecting enzyme activity
Structure of	2.	Understandings:
DNA and RNA		 The nucleic acids DNA and RNA are polymers of nucleotides DNA differs from RNA in the number of strands present, the base composition and the type of pentose DNA is a double helix molecule made of two antiparallel strands of nucleotides linked by hydrogen bonding between complementary base pairs
		 Crick and Watson's elucidation of the structure of DNA using model making

Skills:
 Drawing simple diagrams of the structure of single nucleotides of DNA and RNA, using circles, pentagons and rectangles to represent phosphates, pentoses and bases

DNA structure	7.	Understandings:
and replication	1	 DNA structure suggested a mechanism for DNA replication DNA replication is carried out by a complex system of enzymes DNA polymerase can only add nucleotides to the 3' end of a primer DNA replication is continuous on the leading strand and discontinuous on the lagging strand Some regions of DNA do not code for proteins but have other important functions Nucleosomes help to supercoil the DNA
		Applications:
		 Rosalind Franklin's and Maurice Wilkins' investigation of DNA structure by X-ray diffraction Use of nucleotides containing dideoxyribonucleic acid to stop DNA replication in preparation of samples for base sequencing Tandem repeats are used in DNA profiling
		Skills:
		 Analysis of results of the Hershey and Chase experiment providing evidence that DNA is the genetic material

 Utilisation of molecular visualisation software to
within the nucleosome

Metaboli	8.	Understandings:
sm	1	 Metabolic pathways consist of chains and cycles of enzyme-catalysed reactions Enzymes lower the activation energy of the chemical reactions that they catalyse Enzyme inhibitors can be competitive or non-competitive Metabolic pathways can be controlled by end-product inhibition
		Applications:
		 End-product inhibition of the pathway that converts threonine to isoleucine Use of databases to identify potential new anti-malarial drugs
		Skills:
		 Calculating and plotting rates of reaction from raw experimental results Distinguishing different types of inhibition from graphs at specified substrate concentration